DL8220U.DLL User Guide V2.2
11. Operation System Requirement

12. Function List

43. Function Explanation

43.1) AutoOpenComPort

53.2) OpenComPort()

63.3) CloseComPort

63.4) CloseSpecComPort

63.5) GetChannelMessage

83.6) Acknowledge

83.7) SetRelay

93.8) BuzzerAndLEDControl

103.9) SetClock

103.10) GetClock

113.11) ClearControllerBuffer

123.12) ConfigureController

133.13) GetControllerConfig

143.14) SetIR

153.15) GetIRStatus

153.16) GetControllerInfo

163.17) GetControllerDetailedInfo

173.18) SetAlarmPattern

193.19) GetBGLogDataStatus

203.20) RetrieveEarliestRecord

213.21) RetrieveRecordByIndex

223.22) DeleteAllRecord

223.23) GetControllerReaderConnectionStatus

233.24) SetControllerAddr

243.25) ModeSwitch

253.26) IRDirectionSetting

263.27) ControllerReaderConnectionBrokenAlarm

273.28) SetAlarmMask

303.29) GetEASMessage

313.30) SetBGLogDataStatus

323.31) GetBGLogDataRecordingStatus

323.32) SaveRestoreConfig

333.33) SetAutoLoad

343.34) CommunicationsSetting

343.35) OpenIF2

353.36) CloseIF2

353.37) GetIF2Data

353.38) OpenNetPort

363.39) CloseNetPort

374. Appendix 1

385. Appendix 2

DL8220U.DLL is a dynamic link library designed to facilitate UHF channel device controller application software development.

1. Operation System Requirement

WINDOWS 2000/XP

2. Function List
HFGATE.DLL includes the following functions for the DL8220U controller operation:

2.1）long WINAPI AutoOpenComPort(long* Port, unsigned char *ConAddr, long* PortHandle);

2.2）long WINAPI OpenComPort(long Port, unsigned char *ConAddr, long* PortHandle);

2.3）long WINAPI CloseComPort(void);

2.4）long WINAPI CloseSpecComPort(long PortHandle);

2.5）long WINAPI GetChannelMessage(unsigned char *ConAddr, unsigned char* Msg, unsigned char* MsgLength , unsigned char *MsgType, unsigned char* FreeSpaceRate, long PortHandle);

2.6）void WINAPI Acknowledge(unsigned char *ConAddr, long PortHandle);

2.7）long WINAPI SetRelay(unsigned char *ConAddr, unsigned char ActionTime, unsigned char* FreeSpaceRate, long PortHandle);
2.8）long WINAPI BuzzerAndLEDControl(unsigned char *ConAddr, unsigned char BuzzerOnTime, unsigned char BuzzerOffTime, unsigned char BuzzerActTimes, unsigned char LEDOnTime, unsigned char LEDOffTime, unsigned char LEDFlashTimes, unsigned char LEDColor，unsigned char* FreeSpaceRate, long PortHandle);

2.9) long WINAPI SetClock(unsigned char *ConAddr, unsigned char* SetTime, unsigned char* FreeSpaceRate, long PortHandle);

2.10) long WINAPI GetClock(unsigned char *ConAddr, unsigned char* CurrentTime, unsigned char* FreeSpaceRate, long PortHandle);

2.11) long WINAPI ClearControllerBuffer(unsigned char *ConAddr, unsigned char* FreeSpaceRate, long PortHandle);

2.12) long WINAPI ConfigureController(unsigned char *ConAddr, unsigned char InventoryScanTime, unsigned char ReaderStandbyTime, unsigned char StatisticTime, unsigned char TagExistTime, unsigned char TagMuteTime, unsigned char IRBlockTime, unsigned char BGLogConfig, unsigned char GreenLEDPrompt, unsigned char* FreeSpaceRate, long PortHandle);

2.13) long WINAPI GetControllerConfig(unsigned char *ConAddr, unsigned char* InventoryScanTime, unsigned char* ReaderStandbyTime, unsigned char* StatisticTime, unsigned char* TagExistTime, unsigned char* TagMuteTime, unsigned char* IRBlockTime,unsigned char*BGLogConfig, unsigned char* GreenLEDPrompt, unsigned char* FreeSpaceRate, long PortHandle);

2.14) long WINAPI SetIR(unsigned char *ConAddr, unsigned char SetData, unsigned char* FreeSpaceRate, long PortHandle);
2.15) long WINAPI GetIRStatus(unsigned char *ConAddr, unsigned char* IRStatus, unsigned char* FreeSpaceRate, long PortHandle);

2.16) long WINAPI GetControllerInfo(unsigned char *ConAddr, unsigned char* ProductCode, unsigned char* MainVer, unsigned char* SubVer, unsigned char* FreeSpaceRate, long PortHandle);

2.17) long WINAPI GetControllerDetailedInfo(unsigned char *ConAddr, unsigned char* ProductCode, unsigned char* MainVer, unsigned char* SubVer, unsigned char* SerialNo, unsigned char* FreeSpaceRate, long PortHandle);

2.18) long WINAPI SetAlarmPattern (unsigned char *ConAddr, unsigned char* PatternData, unsigned char* FreeSpaceRate, long PortHandle);

2.19) long WINAPI GetBGLogDataStatus(unsigned char *ConAddr ,long* RecordCount , unsigned char* EarliestRecordTime, unsigned char* LatestRecordTime, unsigned char* FreeSpaceRate, long PortHandle);

2.20) long WINAPI RetrieveEarliestRecord(unsigned char *ConAddr , unsigned char* RecordData, unsigned char* RecordLength, unsigned char *RecordType, unsigned char* FreeSpaceRate, long PortHandle);

2.21) long WINAPI RetrieveRecordByIndex(unsigned char *ConAddr , long Index, unsigned char* RecordData, unsigned char* RecordLength,unsigned char *RecordType, unsigned char* FreeSpaceRate, long PortHandle);
2.22) long WINAPI DeleteAllRecord(unsigned char *ConAddr, unsigned char* FreeSpaceRate, long PortHandle);

2.23) long WINAPI GetControllerReaderConnectionStatus(unsigned char *ConAddr, unsigned char *ConnectionStatus, unsigned char *RFFieldStatus, unsigned char* FreeSpaceRate, long PortHandle) ;

2.24) long WINAPI SetControllerAddr(unsigned char *ConAddr, unsigned char Flag, unsigned char NewAddr, unsigned char *FreeSpaceRate, long PortHandle);
2.25) long WINAPI ModeSwitch(unsigned char *ConAddr, unsigned char *Mode, unsigned char *FreeSpaceRate, long PortHandle);

2.26) long WINAPI IRDirectionSetting(unsigned char *ConAddr, unsigned char *Flag, unsigned char *FreeSpaceRate, long PortHandle);

2.27) long WINAPI ControllerReaderConnectionBrokenAlarm (unsigned char *ConAddr, unsigned char *Flag, unsigned char *FreeSpaceRate, long PortHandle);

2.28) long WINAPI SetAlarmMask (unsigned char *ConAddr, unsigned char Mask,

unsigned char*PatternData, unsigned char *FreeSpaceRate, long PortHandle);

2.29) long WINAPI GetEASMessage (unsigned char *ConAddr, unsigned char* Msg, unsigned char* MsgLength , unsigned char *MsgType, unsigned char* FreeSpaceRate, long PortHandle);

2.30) long WINAPI SetBGLogDataStatus (unsigned char *ConAddr, unsigned char Flag, unsigned char *FreeSpaceRate, long PortHandle);

2.31) long WINAPI GetBGLogDataRecordingStatus (unsigned char *ConAddr, unsigned char*Flag, unsigned char *FreeSpaceRate, long PortHandle);

2.32) long WINAPI SaveRestoreConfig (unsigned char *ConAddr, unsigned char Flag, unsigned char *FreeSpaceRate, long PortHandle);

2.33) long WINAPI SetAutoLoad (unsigned char *ConAddr, unsigned char Flag, unsigned char *FreeSpaceRate, long PortHandle);
2.34)long WINAPI CommunicationsSetting (unsigned char *ConAddr, unsigned char *Flag, unsigned char *FreeSpaceRate, long PortHandle);
2.35) void WINAPI OpenIF2(unsigned char Port);
2.36) void WINAPI CloseIF2(unsigned char Port);

2.37) void WINAPI GetIF2Data(unsigned char *Data, long *DataLength);
2.38) Long WINAPI OpenNetPort(int Port,LPSTR IPaddr, unsigned char *ComAdr, long FrmHandle);

2.39) Long WINAPI CloseNetPort (long FrmHandle);
3. Function Explanation
3.1) AutoOpenComPort
Function description:

This function is used to automatically detect the communication port unoccupied by other application and attached with a controller. The function tries to establish the connection between them. The protocol parameters are 38400bps, 8 data bits, 1 start bit, 1 stop bit, even parity bit.
If the connection is established successfully, the function will open the communication port and return a valid handle, otherwise the function will return an error code with a invalid handle (value as -1).

Usage:

long WINAPI AutoOpenComPort(long * Port, unsigned char *ConAddr, long *PortHandle);

Parameter:

Port: Pointed to the communication port number(COM1~COM12) that the controller is detected and connected.

ConAddr: Pointed to the address of the controller.

When using broadcasting address 0xFF as ConAddr to call the function, the port number to which the controller is detected and the address of the controller will be written back to parameter Port and ConAddr;

When using a designated address 0x00~0xFE as ConAddr to call the function, the port number to which the controller with the specified address is detected will be written back to parameter Port.

Constants COM1~COM10 are defined as follows:

#define COM1 1
#define COM2 2
#define COM3 3
#define COM4 4
#define COM5 5
#define COM6 6
#define COM7 7
#define COM8 8
#define COM9 9
#define COM10 10

#define COM11 11

#define COM12 12

PortHandle: Pointed to the communication handle which is binding with the communication port opened successfully. The application software should use this handle to manipulate the controller connected to the port.
Returns:
Zero value when successful, non-zero value(ErrorCode) when error occurred.

3.2) OpenComPort()
Function description:

This function is used to establish the connection between the controller and a specified communication port. The protocol parameters are 38400bps, 8 data bits, 1 start bit, 1 stop bit, even parity bit.

Usage:

long WINAPI OpenComPort(long Port, unsigned char *ConAddr, long *PortHandle);
Parameter:

Port: Communication port number which is a constant from COM1 to COM12 defined as following:

#define COM1 1
#define COM2 2
#define COM3 3
#define COM4 4
#define COM5 5
#define COM6 6
#define COM7 7
#define COM8 8
#define COM9 9
#define COM10 10

#define COM11 11

#define COM12 12

ConAddr: Pointed to the address of the controller.

When using broadcasting address 0xFF as ConAddr to call the function, the address of the controller will be written back to parameter ConAddr;

When using a designated address 0x00~0xFE as ConAddr to call the function, the function will detect whether a specified address controller is connected to the designated communication port.
PortHandle: Pointed to the communication handle which is binding with the communication port opened successfully. The application software should use this handle to manipulate the controller connected to the port.
Returns:

Zero value when successful, non-zero value(ErrorCode) when error occurred.
3.3) CloseComPort

Function description:

This function is used to disconnect the controller and release the corresponding communication port resources. In some development environment, the communication port resources must be released before exiting. Otherwise the operation system will become unstable.
Usage:

long WINAPI CloseComPort(void);

Parameter: None.
Returns:

Zero value when successful, non-zero value(ErrorCode) when error occurred.
3.4) CloseSpecComPort

Function description:

This function is used to disconnect the controller with the designated communication port and release the corresponding resources.

Usage:
long WINAPI CloseSpecComPort (long PortHandle);

Parameter:
PortHandle: Handle of the corresponding communication port the controller is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.
Returns:

Zero value when successful, non-zero value(ErrorCode) when error occurred.
3.5) GetChannelMessage
Function description:
This function is used to get message information from controller in Channel Mode. The messages include routine message and other alarming or statistic message.

Usage:
long WINAPI GetChannelMessage (unsigned char *ConAddr, unsigned char* Msg, unsigned char* MsgLength , unsigned char *MsgType, unsigned char* FreeSpaceRate, long PortHandle);

Parameter:

ConAddr：Address of the controller.
Msg：Pointed to the message data from controller.
MsgLength：Pointed to the length of Msg.

MsgType：Pointed to the type of information.

(1) MsgType = 0, routine response message:

The 1st to 8th bytes of the Msg are the tag’s UID (LSB)

The 9th byte is the direction data.

The 10th to 15th bytes are the time stamp as year/month/day/hour/minute/second.

If 9th bytes’s bit7=0, bit6=0, bit5=1 and bit4=1, there are block data followed the time stamp. The block data are organized in 4-byte unit with 1 byte block security status data prefixed.

 (2) MsgType = 1, statistic Message:
The 1st to 2th bytes of the Msg are number of people forward passed (LSB).

The 3rd to 4th bytes of the Msg are number of people reversely passed (LSB).

The 5th to 6th bytes of the Msg are number of people passed in uncertain direction (LSB).

The 7th to 8th bytes of the Msg are number of tags detected (LSB).

The 9th to 14th bytes are the time stamp as year/month/day/hour/minute/second.
(3) MsgType = 2, Tag-exist time-overflow Message:
The 1st to 8th bytes of the Msg are the tag’s UID (LSB)
The 9th to 14th bytes are the time stamp as year/month/day/hour/minute/second.

If the length of Msg is greater than 14 and the 15th bytes’s bit3=0, bit2=0, bit1=1 and bit0=1, there are block data followed. The block data are organized in 4-byte unit with 1 byte block security status data prefixed.

(4) MsgType = 3, Infrared-block-time-overflow Message:
The 1st to 6th bytes are the time stamp as year/month/day/hour/minute/second.

(5) MsgType = 4, Infrared-interference-warning Message:
The 1st to 6th bytes are the time stamp as year/month/day/hour/minute/second.

FreeSpaceRate：Pointed to data describing the free space volume in background log data record memory.
FreeSpaceRate = 0: Free space in background log data record memory is over 15%;

FreeSpaceRate = 1: Free space in background log data record memory is less than 15%;
FreeSpaceRate = 2: Background log data record memory is full and log data recording has been stopped.

FreeSpaceRate = 3: Background log data record memory is full and log data has begun to overlap.

PortHandle: Handle of the corresponding communication port the controller is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.
Returns:

Zero value when successful, non-zero value(ErrorCode) when error occurred.
3.6) Acknowledge
Function description:
When the host has correctly received the feedback of command ‘C’, ‘L’ and ‘E’, it should issue this command as an acknowledgement.

Usage:
void WINAPI Acknowledge (unsigned char *ConAddr, long PortHandle);

Parameter:

ConAddr: Address of the controller.
PortHandle: Handle of the corresponding communication port the controller is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.
Returns: None.
3.7) SetRelay

Function description:
This function is used to control the device’s built-in relay to pick-up, last for a requested time and drop out.

Usage:
long WINAPI SetRelay(unsigned char *ConAddr, unsigned char ActionTime, unsigned char* FreeSpaceRate, long PortHandle);

Parameter:
ConAddr: Address of the controller.
ActionTime: the relay’s pick-up duration is Time*100ms, 0<Time<255.
FreeSpaceRate: Pointed to data describing the free space volume in background log data record memory.
FreeSpaceRate = 0: Free space in background log data record memory is over 15%;

FreeSpaceRate = 1: Free space in background log data record memory is less than 15%;
FreeSpaceRate = 2: Background log data record memory is full and log data recording has been stopped.

FreeSpaceRate = 3: Background log data record memory is full and log data has begun to overlap.

PortHandle: Handle of the corresponding communication port the controller is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.
Returns:

Zero value when successful, non-zero value(ErrorCode) when error occurred.
3.8) BuzzerAndLEDControl
Function description:
This function is used to control the device’s built-in LED & Buzzer to flash & beep.
Usage:
long WINAPI BuzzerAndLEDControl(unsigned char *ConAddr, unsigned char BuzzerOnTime, unsigned char BuzzerOffTime, unsigned char BuzzerActTimes, unsigned char LEDOnTime, unsigned char LEDOffTime, unsigned char LEDFlashTimes, unsigned char LEDColor, unsigned char* FreeSpaceRate, long PortHandle);
Parameter:
ConAddr: Address of the controller.
BuzzerOnTime: Buzzer beep duration (T1*100ms), 0<=T1<=255.

BuzzerOffTime: Buzzer mute duration (T2*100ms), 0<=T2<=255.
BuzzerActTimes: Buzzer action times (0<=T3<=255).

LEDOnTime: LED light on duration (T4*100ms), 0<=T4<=255.
LEDOffTime: LED light off duration (T5*100ms), 0<=T5<=255

LEDFlashTimes: LED flash times (0<=T6<=127);

LEDColor: the color of LED.
LEDColor = 0: Red;
 LEDColor = 1: Green.
FreeSpaceRate: Pointed to data describing the free space volume in background log data record memory.
FreeSpaceRate = 0: Free space in background log data record memory is over 15%;

FreeSpaceRate = 1: Free space in background log data record memory is less than 15%;
FreeSpaceRate = 2: Background log data record memory is full and log data recording has been stopped.

FreeSpaceRate = 3: Background log data record memory is full and log data has begun to overlap.

PortHandle: Handle of the corresponding communication port the controller is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.
Returns:

Zero value when successful, non-zero value(ErrorCode) when error occurred.
3.9) SetClock

Function description:
This function is used to set the device’s built-in real time clock.
Usage:
long WINAPI SetClock(unsigned char *ConAddr, unsigned char* SetTime, unsigned char* FreeSpaceRate, long PortHandle);
Parameter:
ConAddr: Address of the controller.
SetTime: 6 bytes time stamp for year-month-day-hour-minute-second in 24hour format.
FreeSpaceRate: Pointed to data describing the free space volume in background log data record memory.
FreeSpaceRate = 0: Free space in background log data record memory is over 15%;

FreeSpaceRate = 1: Free space in background log data record memory is less than 15%;
FreeSpaceRate = 2: Background log data record memory is full and log data recording has been stopped.

FreeSpaceRate = 3: Background log data record memory is full and log data has begun to overlap.

PortHandle: Handle of the corresponding communication port the controller is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.
Returns:

Zero value when successful, non-zero value(ErrorCode) when error occurred.
3.10) GetClock
Function description:
This function is used to query controller’s clock information

Usage:
long WINAPI GetClock(unsigned char *ConAddr, unsigned char* CurrentTime, unsigned char* FreeSpaceRate, long PortHandle);
Parameter:
ConAddr: Address of the controller.
CurrentTime: Pointed to 6 bytes time stamp for year-month-day-hour-minute-second in 24hour format.
FreeSpaceRate: Pointed to data describing the free space volume in background log data record memory.
FreeSpaceRate = 0: Free space in background log data record memory is over 15%;

FreeSpaceRate = 1: Free space in background log data record memory is less than 15%;
FreeSpaceRate = 2: Background log data record memory is full and log data recording has been stopped.

FreeSpaceRate = 3: Background log data record memory is full and log data has begun to overlap.

PortHandle: Handle of the corresponding communication port the controller is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.
Returns:

Zero value when successful, non-zero value(ErrorCode) when error occurred.
3.11) ClearControllerBuffer
Function description:
This function is used to clear the controller’s all buffered tag UID information, messages, personnel passing counter and detected tag counter.

Usage:
long WINAPI ClearControllerBuffer(unsigned char *ConAddr, unsigned char* FreeSpaceRate, long PortHandle);

Parameter:
ConAddr: Address of the controller.
FreeSpaceRate: Pointed to data describing the free space volume in background log data record memory.
FreeSpaceRate = 0: Free space in background log data record memory is over 15%;

FreeSpaceRate = 1: Free space in background log data record memory is less than 15%;
FreeSpaceRate = 2: Background log data record memory is full and log data recording has been stopped.

FreeSpaceRate = 3: Background log data record memory is full and log data has begun to overlap.

PortHandle: Handle of the corresponding communication port the controller is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.
Returns:

Zero value when successful, non-zero value(ErrorCode) when error occurred.
3.12) ConfigureController
Function description:
This function is used to configure the controllers’ parameters.

Usage:
long WINAPI ConfigureController(unsigned char *ConAddr, unsigned char InventoryScanTime, unsigned char ReaderStandbyTime, unsigned char StatisticTime, unsigned char TagExistTime, unsigned char TagMuteTime, unsigned char IRBlockTime, unsigned char BGLogConfig, unsigned char GreenLEDPrompt, unsigned char* FreeSpaceRate, long PortHandle);
Parameter:
ConAddr: Address of the controller.
InventoryScanTime: Reader’s InventoryScanTime(T1*100ms, 3<=T1<=255). Default value is 30 (3s). For the details about the InventoryScanTime, please refer to the device’s built-in reader RR9201T’s user’s manual. The default value is suitable for almost all cases.
ReaderStandbyTime: When the device has been idle for T2*1min (0<=T2<255, default value 0), the controller will turn the reader to standby status and switch off the reader’s RF field. Set T2 to 0 will disable this action. When the reader is in standby status, any infrared trigger will return the reader to active status. If the infrared sensors have been closed by command, this setting will be neglected and the reader will be kept in active status.
StatisticTime: When the device has been idle for T3*1s (3<=T3<=255, default value 10), the controller will deliver the statistic message about the personnel passing and tag detected. Set Te to 0 will disable this action.
TagExistTime: The tag-exist-time T4H*1s (0<T4H<=15, default value 5) defines the time interval threshold between the tag detected by the device and correlated with a personnel passing action. When the tag’s exist-time is over this limit, the controller will deliver a tag-exist-time-overflow message.
TagMuteTime: The tag-mute-time T4L*500ms (0<T4L<=15, default value 2) defines the mute time for one tag’s multiple detections. When a tag have been detected and been correlated with a passing action by the device, the controller will neglect the same tag when it is detected in the next T4L time.
IRBlockTime: If any of the infrared sensors is blocked for over T5*1s (3<=T5<=255, default value 3), the controller will deliver an infrared-block-time-overflow message.
BGLogConfig: background log data setting

BGLogConfig =0: Stop recording when background log data memory is full.

BGLogConfig =1: Overlapping the oldest record when background log data memory is full.

GreenLEDPrompt: Green LED prompt

 GreenLEDPrompt= 0: Close;

 GreenLEDPrompt= 1: Open.
Green LED prompt means:
In Channel Mode, the green LED will flash when a person passed with a tag (infrared sensors on) or a tag be detected (infrared sensors off).

In EAS Mode, the green LED will flash when a person passed (infrared sensors on).

FreeSpaceRate: Pointed to data describing the free space volume in background log data record memory.
FreeSpaceRate = 0: Free space in background log data record memory is over 15%;

FreeSpaceRate = 1: Free space in background log data record memory is less than 15%;
FreeSpaceRate = 2: Background log data record memory is full and log data recording has been stopped.

FreeSpaceRate = 3: Background log data record memory is full and log data has begun to overlap.

PortHandle: Handle of the corresponding communication port the controller is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.

Returns:

Zero value when successful, non-zero value(ErrorCode) when error occurred.
3.13) GetControllerConfig
Function description:
This function is used to get the controllers’ configure parameters.

Usage:
long WINAPI GetControllerConfig(unsigned char *ConAddr, unsigned char* InventoryScanTime, unsigned char* ReaderStandbyTime, unsigned char* StatisticTime, unsigned char* TagExistTime, unsigned char* TagMuteTime, unsigned char* IRBlockTime,unsigned char*BGLogConfig, unsigned char* GreenLEDPrompt, unsigned char* FreeSpaceRate, long PortHandle);
Parameter:
ConAddr: Address of the controller.
InventoryScanTime: Pointed to Reader InventoryScanTime.
ReaderStandbyTime: Pointed to Reader standby time .
StatisticTime: Pointed to Statistic Interval.
TagExistTime: Pointed to threshold of tag exist time.
TagMuteTime: Pointed to threshold of tag mute time.

IRBlockTime: Pointed to threshold of infrared block time
BGLogConfig: Pointed to background log data setting
BGLogConfig =0: Stop recording when background log data memory is full.

BGLogConfig =1: Overlapping the oldest record when background log data memory is full.

GreenLEDPrompt: Pointed to Green LED prompt.

 GreenLEDPrompt= 0: Close;

 GreenLEDPrompt= 1: Open.
FreeSpaceRate: Pointed to data describing the free space volume in background log data record memory.
FreeSpaceRate = 0: Free space in background log data record memory is over 15%;

FreeSpaceRate = 1: Free space in background log data record memory is less than 15%;
FreeSpaceRate = 2: Background log data record memory is full and log data recording has been stopped.

FreeSpaceRate = 3: Background log data record memory is full and log data has begun to overlap.

PortHandle: Handle of the corresponding communication port the controller is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.
Returns:

Zero value when successful, non-zero value(ErrorCode) when error occurred.
3.14) SetIR

Function description:
This function is used to set infrared sensors status.

Usage:
Long WINAPI SetIR(unsigned char *ConAddr, unsigned char SetData, unsigned
Parameter:
ConAddr: Address of the controller.

SetData: infrared control byte

 SetData=1: Close infrared sensors；

 SetData=2: Activate infrared sensors.
FreeSpaceRate: Pointed to data describing the free space volume in background log data record memory.
FreeSpaceRate = 0: Free space in background log data record memory is over 15%;

FreeSpaceRate = 1: Free space in background log data record memory is less than 15%;
FreeSpaceRate = 2: Background log data record memory is full and log data recording has been stopped.

FreeSpaceRate = 3: Background log data record memory is full and log data has begun to overlap.

PortHandle: Handle of the corresponding communication port the controller is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.
Returns:

Zero value when successful, non-zero value(ErrorCode) when error occurred.
3.15) GetIRStatus
Function description:
This function is used to query IR status.
Usage:
long WINAPI GetIRStatus(unsigned char *ConAddr, unsigned char* IRStatus, unsigned char* FreeSpaceRate, long PortHandle);

Parameter:
ConAddr: Address of the controller.
IRStatus: Pointed to IR status byte

 IRStatus =0: Infrared is closed；

 IRStatus =1: Infrared is active.
FreeSpaceRate: Pointed to data describing the free space volume in background log data record memory.
FreeSpaceRate = 0: Free space in background log data record memory is over 15%;

FreeSpaceRate = 1: Free space in background log data record memory is less than 15%;
FreeSpaceRate = 2: Background log data record memory is full and log data recording has been stopped.

FreeSpaceRate = 3: Background log data record memory is full and log data has begun to overlap.

PortHandle: Handle of the corresponding communication port the controller is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.
Returns:

Zero value when successful, non-zero value(ErrorCode) when error occurred.
3.16) GetControllerInfo
Function description:
This function is used to get controller’s information.
Usage:
long WINAPI GetControllerInfo(unsigned char *ConAddr, unsigned char* ProductCode, unsigned char* MainVer, unsigned char* SubVer, unsigned char* FreeSpaceRate, long PortHandle);
Parameter:
ConAddr: Address of the controller.

ProductCode: Pointed to controller’s product code
MainVer: Pointed to the main version number of the controller
SubVer: Pointed to the sub-version number of the controller

FreeSpaceRate: Pointed to data describing the free space volume in background log data record memory.
FreeSpaceRate = 0: Free space in background log data record memory is over 15%;

FreeSpaceRate = 1: Free space in background log data record memory is less than 15%;
FreeSpaceRate = 2: Background log data record memory is full and log data recording has been stopped.

FreeSpaceRate = 3: Background log data record memory is full and log data has begun to overlap.

PortHandle: Handle of the corresponding communication port the controller is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.
Returns:

Zero value when successful, non-zero value(ErrorCode) when error occurred.
3.17) GetControllerDetailedInfo
Function description:
This function is used to get controller’s detailed information.

Usage:
long WINAPI GetControllerDetailedInfo(unsigned char *ConAddr, unsigned char* ProductCode, unsigned char* MainVer, unsigned char* SubVer, unsigned char* SerialNo, unsigned char* FreeSpaceRate, long PortHandle);Function Description：Infrared controller to obtain detailed information
Parameter:
ConAddr: Address of the controller.
ProductCode: Pointed to controller’s product code

MainVer: Pointed to the main version number of the controller

SubVer: Pointed to the sub-version number of the controller

SerialNo: Point to four byte length of the product serial number

FreeSpaceRate: Pointed to data describing the free space volume in background log data record memory.
FreeSpaceRate = 0: Free space in background log data record memory is over 15%;

FreeSpaceRate = 1: Free space in background log data record memory is less than 15%;
FreeSpaceRate = 2: Background log data record memory is full and log data recording has been stopped.

FreeSpaceRate = 3: Background log data record memory is full and log data has begun to overlap.

PortHandle: Handle of the corresponding communication port the controller is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.

Returns:

Zero value when successful, non-zero value(ErrorCode) when error occurred.
3.18) SetAlarmPattern
Function description:
This function is used to set the action mode of buzzer, LED and relay when alarming.
Usage:
long WINAPI SetAlarmPattern (unsigned char *ConAddr, unsigned char* PatternData, unsigned char* FreeSpaceRate, long PortHandle);
Parameter:
ConAddr: Address of the controller.
PatternData：
Alarm action mode comprises 45 bytes. Each 9 bytes is a group. 5 groups define action mode for 5 alarming source. The controller defines 5 alarming source that are person-passing-without-tag, person-reversely-passing, person-uncertain-direction-passing, infrared-interference-warning and EAS alarm.
	person-passing-without-tag
	Byte 0
	Buzzer beeping duration in one cycle. Unit 100ms. Default value 1.

	
	Byte 1
	Buzzer mute duration in one cycle. Unit 100ms. Default value 1.

	
	Byte 2
	Repeating times. Default value 2.

	
	Byte 3
	Red LED light on duration in one cycle. Unit 100ms. Default value 1.

	
	Byte 4
	Red LED light off duration in one cycle. Unit 100ms. Default value 1.

	
	Byte 5
	Red LED flash times. Default value 2.

	
	Byte 6
	Relay pick-up duration in one cycle. Unit 100ms. Default value 0.

	
	Byte 7
	Relay dropout duration in one cycle. Unit 100ms. Default value 0.

	
	 Byte 8
	Repeating times. Default value 1.

	person-reversely-passing
	Byte 9
	Buzzer beeping duration in one cycle. Unit 100ms. Default value 1.

	
	Byte 10
	Buzzer mute duration in one cycle. Unit 100ms. Default value 1.

	
	Byte 11
	Repeating times. Default value 2.

	
	Byte 12
	Red LED light on duration in one cycle. Unit 100ms. Default value 1.

	
	Byte 13
	Red LED light off duration in one cycle. Unit 100ms. Default value 1.

	
	Byte 14
	Red LED flash times. Default value 2.

	
	Byte 15
	Relay pick-up duration in one cycle. Unit 100ms. Default value 0.

	
	Byte 16
	Relay dropout duration in one cycle. Unit 100ms. Default value 0.

	
	Byte 17
	Repeating times. Default value 1.

	person-uncertain-direction-passing
	Byte 18
	Buzzer beeping duration in one cycle. Unit 100ms. Default value 1.

	
	Byte 19
	Buzzer mute duration in one cycle. Unit 100ms. Default value 1.

	
	Byte 20
	Repeating times. Default value 2.

	
	Byte 21
	Red LED light on duration in one cycle. Unit 100ms. Default value 1.

	
	Byte 22
	Red LED light off duration in one cycle. Unit 100ms. Default value 1.

	
	Byte 23
	Red LED flash times. Default value 2.

	
	Byte 24
	Relay pick-up duration in one cycle. Unit 100ms. Default value 0.

	
	Byte 25
	Relay dropout duration in one cycle. Unit 100ms. Default value 0.

	
	Byte 26
	Repeating times. Default value 1.

	infrared-interference-warning
	Byte 27
	Buzzer beeping duration in one cycle. Unit 100ms. Default value 1.

	
	Byte 28
	Buzzer mute duration in one cycle. Unit 100ms. Default value 1.

	
	Byte 29
	Repeating times. Default value 2.

	
	Byte 30
	Red LED light on duration in one cycle. Unit 100ms. Default value 1.

	
	Byte 31
	Red LED light off duration in one cycle. Unit 100ms. Default value 1.

	
	Byte 32
	Red LED flash times. Default value 2.

	
	Byte 33
	Relay pick-up duration in one cycle. Unit 100ms. Default value 0.

	
	Byte 34
	Relay dropout duration in one cycle. Unit 100ms. Default value 0.

	
	Byte 35
	Repeating times. Default value 1.

	EAS alarm
	Byte 36
	Buzzer beeping duration in one cycle. Unit 100ms. Default value 1.

	
	Byte 37
	Buzzer mute duration in one cycle. Unit 100ms. Default value 1.

	
	Byte 38
	Repeating times. Default value 2.

	
	Byte 39
	Red LED light on duration in one cycle. Unit 100ms. Default value 1.

	
	Byte 40
	Red LED light off duration in one cycle. Unit 100ms. Default value 1.

	
	Byte 41
	Red LED flash times. Default value 2.

	
	Byte 42
	Relay pick-up duration in one cycle. Unit 100ms. Default value 0.

	
	Byte 43
	Relay dropout duration in one cycle. Unit 100ms. Default value 0.

	
	Byte 44
	Repeating times. Default value 1.

FreeSpaceRate：Pointed to data describing the free space volume in background log data record memory.
FreeSpaceRate = 0: Free space in background log data record memory is over 15%;

FreeSpaceRate = 1: Free space in background log data record memory is less than 15%;
FreeSpaceRate = 2: Background log data record memory is full and log data recording has been stopped.

FreeSpaceRate = 3: Background log data record memory is full and log data has begun to overlap.

PortHandle: Handle of the corresponding communication port the controller is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.
Returns:

Zero value when successful, non-zero value(ErrorCode) when error occurred.
3.19) GetBGLogDataStatus
Function description:
This function is used to query the status of the background log data.

Usage:
long WINAPI GetBGLogDataStatus(unsigned char *ConAddr ,long* RecordCount , unsigned char* EarliestRecordTime, unsigned char* LatestRecordTime, unsigned char* FreeSpaceRate, long PortHandle);
Parameter:
ConAddr: Address of the controller.
RecordCount: Pointed to 2 bytes length total number of background log data records with maximum value 65535.
EarliestRecordTime: Pointed to the time stamp for the earliest log data record with 6bytes for year-month-day-hour-minute-second in 24hour format.

LatestRecordTime: Pointed to the time stamp for the latest log data record with 6bytes for year-month-day-hour-minute-second in 24hour format.
FreeSpaceRate: Pointed to data describing the free space volume in background log data record memory.
FreeSpaceRate = 0: Free space in background log data record memory is over 15%;

FreeSpaceRate = 1: Free space in background log data record memory is less than 15%;
FreeSpaceRate = 2: Background log data record memory is full and log data recording has been stopped.

FreeSpaceRate = 3: Background log data record memory is full and log data has begun to overlap.

PortHandle: Handle of the corresponding communication port the controller is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.
Returns:

Zero value when successful, non-zero value(ErrorCode) when error occurred.
3.20) RetrieveEarliestRecord
Function description:
This function is used to extract the earliest record in the background log data.
Usage:
long WINAPI RetrieveEarliestRecord(unsigned char *ConAddr , unsigned char* RecordData, unsigned char* RecordLength, unsigned char *RecordType, unsigned char* FreeSpaceRate, long PortHandle);
Parameter:
ConAddr: Address of the controller.
RecordData: Point to the message content of the retrieved record data. As to the detailed information, please refer to command ‘E’ in user’s manual.
RecordLength: pointed to the length of RecordData
RecordType: pointed to the message type of RecordData.
FreeSpaceRate: Pointed to data describing the free space volume in background log data record memory.
FreeSpaceRate = 0: Free space in background log data record memory is over 15%;

FreeSpaceRate = 1: Free space in background log data record memory is less than 15%;
FreeSpaceRate = 2: Background log data record memory is full and log data recording has been stopped.

FreeSpaceRate = 3: Background log data record memory is full and log data has begun to overlap.

PortHandle: Handle of the corresponding communication port the controller is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.
Returns:

Zero value when successful, non-zero value(ErrorCode) when error occurred.
3.21) RetrieveRecordByIndex
Function description:
This function is used to extract a record in the background log data by its sequence number (index number).

Usage:
long WINAPI RetrieveRecordByIndex(unsigned char *ConAddr , long Index, unsigned char* RecordData, unsigned char* RecordLength,unsigned char *RecordType, unsigned char* FreeSpaceRate, long PortHandle);
Parameter:
ConAddr: address of the controller.
Index: its sequence number.
RecordData: Point to the message content of the retrieved record data. As to the detailed information, please refer to command ‘S’ in user’s manual.
RecordLength: Pointed to the length of RecordData.
RecordType: Pointed to message type of RecordData.
FreeSpaceRate: Pointed to data describing the free space volume in background log data record memory.
FreeSpaceRate = 0: Free space in background log data record memory is over 15%;

FreeSpaceRate = 1: Free space in background log data record memory is less than 15%;
FreeSpaceRate = 2: Background log data record memory is full and log data recording has been stopped.

FreeSpaceRate = 3: Background log data record memory is full and log data has begun to overlap.

PortHandle: Handle of the corresponding communication port the controller is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.
Returns:

Zero value when successful, non-zero value(ErrorCode) when error occurred.
3.22) DeleteAllRecord
Function description:
This function is used to delete all the background log data.
Usage:
long WINAPI DeleteAllRecord(unsigned char *ConAddr, unsigned char* FreeSpaceRate, long PortHandle);
Parameter:
ConAddr: Address of the controller.
FreeSpaceRate: Pointed to data describing the free space volume in background log data record memory.
FreeSpaceRate = 0: Free space in background log data record memory is over 15%;

FreeSpaceRate = 1: Free space in background log data record memory is less than 15%;
FreeSpaceRate = 2: Background log data record memory is full and log data recording has been stopped.

FreeSpaceRate = 3: Background log data record memory is full and log data has begun to overlap.

PortHandle: Handle of the corresponding communication port the controller is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.
Returns:

Zero value when successful, non-zero value(ErrorCode) when error occurred.
3.23) GetControllerReaderConnectionStatus
Function description:
This function is used to check whether the reader is correctly connected with the controller and the RF field of the reader is on.
Usage:
long WINAPI GetControllerReaderConnectionStatus(unsigned char *ConAddr, unsigned char *ConnectionStatus, unsigned char *RFFieldStatus, unsigned char* FreeSpaceRate, long PortHandle) ;
Parameter:
ConAddr: Address of the controller.
ConnectionStatus：Pointed to connection status of the controller and the reader
0x00: the connection is broken and the controller is trying to reconnect with the reader.
0x01: the connection is normal.
RFFieldStatus：Pointed to the state of RF field，

0x00: RF off；

0x01: RF on.
FreeSpaceRate：Pointed to data describing the free space volume in background log data record memory.
FreeSpaceRate = 0: Free space in background log data record memory is over 15%;

FreeSpaceRate = 1: Free space in background log data record memory is less than 15%;
FreeSpaceRate = 2: Background log data record memory is full and log data recording has been stopped.

FreeSpaceRate = 3: Background log data record memory is full and log data has begun to overlap.

PortHandle: Handle of the corresponding communication port the controller is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.
Returns:

Zero value when successful, non-zero value(ErrorCode) when error occurred.
3.24) SetControllerAddr
Function description:
This function is used to set or get the controller’s address.

Usage:
long WINAPI SetControllerAddr(unsigned char *ConAddr, unsigned char Flag, unsigned char NewAddr, unsigned char *FreeSpaceRate, long PortHandle);
Parameter:
ConAddr：Address of the controller.
Flag: Operation flag

 Flag = 0: Get the controller address;
 Flag = 1: Set the controller address.
NewAddr: New controller’s address. Range is 0~254.
FreeSpaceRate: Pointed to data describing the free space volume in background log data record memory.
FreeSpaceRate = 0: Free space in background log data record memory is over 15%;

FreeSpaceRate = 1: Free space in background log data record memory is less than 15%;
FreeSpaceRate = 2: Background log data record memory is full and log data recording has been stopped.

FreeSpaceRate = 3: Background log data record memory is full and log data has begun to overlap.

PortHandle: Handle of the corresponding communication port the controller is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.
Returns:

Zero value when successful, non-zero value(ErrorCode) when error occurred.
3.25) ModeSwitch
Function description:
This function is used to view or change the work mode of the controller. The controller supports two work modes: Channel Mode and EAS Mode.
Usage:
long WINAPI ModeSwitch(unsigned char *ConAddr, unsigned char Mode, unsigned char *FreeSpaceRate, long PortHandle);
Parameter:
ConAddr: Address of the controller.
Mode: Input/output variable

when as input:
bit0 = 0, Channel Mode;
bit0 = 1, EAS Mode;
bit7 = 0, Get current work mode;
bit7 = 1, Set current work mode according to bit0.
Other bits are reserved and should be 0.
When as output:
bit1 = 0: bit0 indicates the current work mode.
bit1 = 1: the controller is forced in EAS mode. Bit0 value should be neglected.
bit0 = 0: Channel Mode.
bit0 = 1: EAS Mode.
bit2 – bit7: Reserved.

FreeSpaceRate：Pointed to data describing the free space volume in background log data record memory.
FreeSpaceRate = 0: Free space in background log data record memory is over 15%;

FreeSpaceRate = 1: Free space in background log data record memory is less than 15%;
FreeSpaceRate = 2: Background log data record memory is full and log data recording has been stopped.

FreeSpaceRate = 3: Background log data record memory is full and log data has begun to overlap.

PortHandle: Handle of the corresponding communication port the controller is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.
Returns:

Zero value when successful, non-zero value(ErrorCode) when error occurred.
3.26) IRDirectionSetting
Function description:
This function is used to query or set the infrared sensors’ sensing sequences.
Usage:
long WINAPI IRDirectionSetting(unsigned char *ConAddr, unsigned char *Flag, unsigned char *FreeSpaceRate, long PortHandle);
Parameter:
ConAddr: Address of the controller.
Flag: Input/output variable.
 When as input:
bit0 = 0: normal infrared sensor sequence.
bit0 = 1: reversed infrared sensor sequence.
bit7 = 0: query operation. Bit0 value should be neglected.
bit7 = 1: set operation. The infrared sensor sequence will be set as bit0 defined.
Other bits are reserved.

When as output:
bit0=0: normal infrared sensor sequence.
bit0=1: reversed infrared sensor sequence.
Other bits are reserved.
FreeSpaceRate：Pointed to data describing the free space volume in background log data record memory.
FreeSpaceRate = 0: Free space in background log data record memory is over 15%;

FreeSpaceRate = 1: Free space in background log data record memory is less than 15%;
FreeSpaceRate = 2: Background log data record memory is full and log data recording has been stopped.

FreeSpaceRate = 3: Background log data record memory is full and log data has begun to overlap.

PortHandle: Handle of the corresponding communication port the controller is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.
Returns:

Zero value when successful, non-zero value(ErrorCode) when error occurred.
3.27) ControllerReaderConnectionBrokenAlarm
Function description:
This function is used to query or set the alarm of controller-reader connection
Usage:
long WINAPI ControllerReaderConnectionBrokenAlarm (unsigned char *ConAddr, unsigned char *Flag, unsigned char *FreeSpaceRate, long PortHandle);
Parameter:
ConAddr: Address of the controller.
Flag: Input/output variable
 When as input:

bit0 = 0: no alarm when the connection broken.
bit0 = 1: alarm when the connection broken.
bit7 = 0: query current connection alarm setting. In this case, the bit0’s value will be neglected.
bit7 = 1: enable/disable connection alarm according to bit0’s value.
When as output:
bit0 = 0: no alarm when the connection broken.
bit0 = 1: alarm when the connection broken.
Other bits are reserved.
FreeSpaceRate: Pointed to data describing the free space volume in background log data record memory.
FreeSpaceRate = 0: Free space in background log data record memory is over 15%;

FreeSpaceRate = 1: Free space in background log data record memory is less than 15%;
FreeSpaceRate = 2: Background log data record memory is full and log data recording has been stopped.

FreeSpaceRate = 3: Background log data record memory is full and log data has begun to overlap.

PortHandle: Handle of the corresponding communication port the controller is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.
Returns:

Zero value when successful, non-zero value(ErrorCode) when error occurred.
3.28) SetAlarmMask
Function description:
This function is used to enable/disable 5 alarming source individually. The controller defines 5 alarming source that are person-passing-without-tag, person-reversely-passing, person-uncertain-direction-passing, infrared-interference-warning and EAS alarm.
Usage:
long WINAPI SetAlarmMask (unsigned char *ConAddr, unsigned char Mask,

unsigned char*PatternData, unsigned char *FreeSpaceRate, long PortHandle);
Parameter:
ConAddr: Address of the controller.
Mask: alarm masking

Bit0~bit4 are enable/disable bits for person-passing-without-tag, person-reversely-passing, person-uncertain-direction-passing, infrared-interference-warning and EAS alarm. When a bit is cleared to 0, the corresponding alarm source is disabled. When a bit is set to 1, the corresponding alarm source is enabled. Bit5~bit6 reserved.

Bit7 is command flag. When bit7 is set to 1, the controller will enable/disable the alarming source according to bit0~bit4’s value. When bit7 is cleared to 0, the controller will feedback the current alarming mask data to the host.
PatternData：Pointed to 46 bytes alarm pattern data.
The 1st byte’s bit0~bit4 is corresponding to enable/disable bits for person-passing-without-tag, person-reversely-passing, person-uncertain-direction-passing, infrared-interference-warning and EAS alarm. When a bit is cleared to 0, the corresponding alarm source is disabled. When a bit is set to 1, the corresponding alarm source is enabled.
The other 45 bytes are as follows:
	person-passing-without-tag
	Byte 1
	Buzzer beeping duration in one cycle. Unit 100ms. Default value 1.

	
	Byte 2
	Buzzer mute duration in one cycle. Unit 100ms. Default value 1.

	
	Byte 3
	Repeating times. Default value 2.

	
	Byte 4
	Red LED light on duration in one cycle. Unit 100ms. Default value 1.

	
	Byte 5
	Red LED light off duration in one cycle. Unit 100ms. Default value 1.

	
	Byte 6
	Red LED flash times. Default value 2.

	
	Byte 7
	Relay pick-up duration in one cycle. Unit 100ms. Default value 0.

	
	Byte 8
	Relay dropout duration in one cycle. Unit 100ms. Default value 0.

	
	Byte 9
	Repeating times. Default value 1.

	person-reversely-passing
	Byte 10
	Buzzer beeping duration in one cycle. Unit 100ms. Default value 1.

	
	Byte 11
	Buzzer mute duration in one cycle. Unit 100ms. Default value 1.

	
	Byte 12
	Repeating times. Default value 2.

	
	Byte 13
	Red LED light on duration in one cycle. Unit 100ms. Default value 1.

	
	Byte 14
	Red LED light off duration in one cycle. Unit 100ms. Default value 1.

	
	Byte 15
	Red LED flash times. Default value 2.

	
	Byte 16
	Relay pick-up duration in one cycle. Unit 100ms. Default value 0.

	
	Byte 17
	Relay dropout duration in one cycle. Unit 100ms. Default value 0.

	
	Byte 18
	Repeating times. Default value 1.

	person-uncertain-direction-passing
	Byte 19
	Buzzer beeping duration in one cycle. Unit 100ms. Default value 1.

	
	Byte 20
	Buzzer mute duration in one cycle. Unit 100ms. Default value 1.

	
	Byte 21
	Repeating times. Default value 2.

	
	Byte 22
	Red LED light on duration in one cycle. Unit 100ms. Default value 1.

	
	Byte 23
	Red LED light off duration in one cycle. Unit 100ms. Default value 1.

	
	Byte 24
	Red LED flash times. Default value 2.

	
	Byte 25
	Relay pick-up duration in one cycle. Unit 100ms. Default value 0.

	
	Byte 26
	Relay dropout duration in one cycle. Unit 100ms. Default value 0.

	
	Byte 27
	Repeating times. Default value 1.

	infrared-interference-warning
	Byte 28
	Buzzer beeping duration in one cycle. Unit 100ms. Default value 1.

	
	Byte 29
	Buzzer mute duration in one cycle. Unit 100ms. Default value 1.

	
	Byte 30
	Repeating times. Default value 2.

	
	Byte 31
	Red LED light on duration in one cycle. Unit 100ms. Default value 1.

	
	Byte 32
	Red LED light off duration in one cycle. Unit 100ms. Default value 1.

	
	Byte 33
	Red LED flash times. Default value 2.

	
	Byte 34
	Relay pick-up duration in one cycle. Unit 100ms. Default value 0.

	
	Byte 35
	Relay dropout duration in one cycle. Unit 100ms. Default value 0.

	
	Byte 36
	Repeating times. Default value 1.

	EAS alarm
	Byte 37
	Buzzer beeping duration in one cycle. Unit 100ms. Default value 1.

	
	Byte 38
	Buzzer mute duration in one cycle. Unit 100ms. Default value 1.

	
	Byte 39
	Repeating times. Default value 2.

	
	Byte 40
	Red LED light on duration in one cycle. Unit 100ms. Default value 1.

	
	Byte 41
	Red LED light off duration in one cycle. Unit 100ms. Default value 1.

	
	Byte 42
	Red LED flash times. Default value 2.

	
	Byte 43
	Relay pick-up duration in one cycle. Unit 100ms. Default value 0.

	
	Byte 44
	Relay dropout duration in one cycle. Unit 100ms. Default value 0.

	
	Byte 45
	Repeating times. Default value 1.

FreeSpaceRate: Pointed to data describing the free space volume in background log data record memory.
FreeSpaceRate = 0: Free space in background log data record memory is over 15%;

FreeSpaceRate = 1: Free space in background log data record memory is less than 15%;
FreeSpaceRate = 2: Background log data record memory is full and log data recording has been stopped.

FreeSpaceRate = 3: Background log data record memory is full and log data has begun to overlap.
PortHandle: Handle of the corresponding communication port the controller is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.
Returns:

Zero value when successful, non-zero value(ErrorCode) when error occurred.
3.29) GetEASMessage
Function description:
This function is used to get person-passing message, EAS alarm message and other statistic or alarm messages of controller in EAS mode.

Usage:
long WINAPI GetEASMessage (unsigned char *ConAddr, unsigned char* Msg, unsigned char* MsgLength , unsigned char *MsgType, unsigned char* FreeSpaceRate, long PortHandle);

Parameter:
ConAddr：Address of the controller.
Msg: Pointed to the message information data access from controller.
MsgLength: Pointed to the length of Msg.
MsgType：Pointed to the type of information.

(1) MsgType = 0, routine response message:

The 1st bytes of the Msg is the direction data.

The 2nd to 7th bytes are the time stamp as year/month/day/hour/minute/second.

(2) MsgType = 1, statistic Message:
The 1st to 2th bytes of the Msg are number of people forward passed (LSB).

The 3rd to 4th bytes of the Msg are number of people reversely passed (LSB).

The 5th to 6th bytes of the Msg are number of people passed in uncertain direction (LSB).

The 7th to 12th bytes are the time stamp as year/month/day/hour/minute/second.
(3) MsgType = 2, Tag-exist time-overflow Message:
The 1th to 6th bytes are the time stamp as year/month/day/hour/minute/second.

(4) MsgType = 3, Infrared-block-time-overflow Message:
The 1st to 6th bytes are the time stamp as year/month/day/hour/minute/second.

FreeSpaceRate：Pointed to data describing the free space volume in background log data record memory.
FreeSpaceRate = 0: Free space in background log data record memory is over 15%;

FreeSpaceRate = 1: Free space in background log data record memory is less than 15%;
FreeSpaceRate = 2: Background log data record memory is full and log data recording has been stopped.

FreeSpaceRate = 3: Background log data record memory is full and log data has begun to overlap.

PortHandle: Handle of the corresponding communication port the controller is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.
Returns:

Zero value when successful, non-zero value(ErrorCode) when error occurred.
3.30) SetBGLogDataStatus
Function description:
This function is used to start or stop background log data recording.

Usage:
long WINAPI SetBGLogDataStatus (unsigned char *ConAddr, unsigned char Flag, unsigned char *FreeSpaceRate, long PortHandle);
Parameter:
ConAddr: Address of the controller.
Flag: Operation flag
 Flag = 0: Stop background log data recording.
 Flag = 1: Start background log data recording.

FreeSpaceRate: Pointed to data describing the free space volume in background log data record memory.
FreeSpaceRate = 0: Free space in background log data record memory is over 15%;

FreeSpaceRate = 1: Free space in background log data record memory is less than 15%;
FreeSpaceRate = 2: Background log data record memory is full and log data recording has been stopped.

FreeSpaceRate = 3: Background log data record memory is full and log data has begun to overlap.

PortHandle: Handle of the corresponding communication port the controller is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.
Returns:

Zero value when successful, non-zero value(ErrorCode) when error occurred.
3.31) GetBGLogDataRecordingStatus
Function description:
This function is used to query current background log data recording status.

Usage:
long WINAPI GetBGLogDataRecordingStatus (unsigned char *ConAddr, unsigned char*Flag, unsigned char *FreeSpaceRate, long PortHandle);
Parameter:
ConAddr: Address of the controller.
Flag: Point to 1 byte data.
Flag = 0: background log data recording is stopped.
 Flag = 1: background log data recording is started.
Other bits are reserved.
FreeSpaceRate: Pointed to data describing the free space volume in background log data record memory.
FreeSpaceRate = 0: Free space in background log data record memory is over 15%;

FreeSpaceRate = 1: Free space in background log data record memory is less than 15%;
FreeSpaceRate = 2: Background log data record memory is full and log data recording has been stopped.

FreeSpaceRate = 3: Background log data record memory is full and log data has begun to overlap.

PortHandle: Handle of the corresponding communication port the controller is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.
Returns:

Zero value when successful, non-zero value(ErrorCode) when error occurred.
3.32) SaveRestoreConfig
Function description:
This function is used to save or restore the controller currently-using configuration data.
Usage:
long WINAPI SaveRestoreConfig (unsigned char *ConAddr, unsigned char Flag, unsigned char *FreeSpaceRate, long PortHandle);
Parameter:
ConAddr: Address of the controller.
Flag: Operation flag
 Flag = 0: Restore controller configuration data from background backup.
 Flag = 1: Save controller current configuration data to background backup.

FreeSpaceRate：Pointed to data describing the free space volume in background log data record memory.
FreeSpaceRate = 0: Free space in background log data record memory is over 15%;

FreeSpaceRate = 1: Free space in background log data record memory is less than 15%;
FreeSpaceRate = 2: Background log data record memory is full and log data recording has been stopped.

FreeSpaceRate = 3: Background log data record memory is full and log data has begun to overlap.

PortHandle: Handle of the corresponding communication port the controller is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.
Returns:

Zero value when successful, non-zero value(ErrorCode) when error occurred.
3.33) SetAutoLoad
Function description:
This function is used to set if the controller should auto load its configuration data from background backup when it is powered up, resetted or after mode switching.
Usage:
long WINAPI SetAutoLoad (unsigned char *ConAddr, unsigned char Flag, unsigned char *FreeSpaceRate, long PortHandle);
Parameter:
ConAddr: Address of the controller.
Flag: Operation flag
Flag = 0: Disable background backup configuration data auto-loading.

Flag = 1: Enable background backup configuration data auto-loading.
FreeSpaceRate：Pointed to data describing the free space volume in background log data record memory.
FreeSpaceRate = 0: Free space in background log data record memory is over 15%;

FreeSpaceRate = 1: Free space in background log data record memory is less than 15%;
FreeSpaceRate = 2: Background log data record memory is full and log data recording has been stopped.

FreeSpaceRate = 3: Background log data record memory is full and log data has begun to overlap.

PortHandle: Handle of the corresponding communication port the controller is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.

Returns:

Zero value when successful, non-zero value(ErrorCode) when error occurred.
3.34) CommunicationsSetting
Function description:
This function is used to save or restore the controller currently-using configuration data.
Usage:
long WINAPI CommunicationsSetting (unsigned char *ConAddr, unsigned char *Flag, unsigned char *FreeSpaceRate, long PortHandle);
Parameter:
ConAddr: Address of the controller.
Flag: Operation flag
Bit0=0:Disable communication with controller
Bit0=1:Enable communication with controller
Bit7=0:Get the statue of the communication that controller and reader.
Bit7=1: Set the statue of the communication that controller and reader.

FreeSpaceRate：Pointed to data describing the free space volume in background log data record memory.
FreeSpaceRate = 0: Free space in background log data record memory is over 15%;

FreeSpaceRate = 1: Free space in background log data record memory is less than 15%;
FreeSpaceRate = 2: Background log data record memory is full and log data recording has been stopped.

FreeSpaceRate = 3: Background log data record memory is full and log data has begun to overlap.

PortHandle: Handle of the corresponding communication port the controller is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.
Returns:

Zero value when successful, non-zero value(ErrorCode) when error occurred.
3.35) OpenIF2
Function description:
This function is used to open Port IF2.
Usage:
void WINAPI OpenIF2 (unsigned char Port);
Parameter:
Port: Pointed to the communication port number(COM1~COM12) that the controller’s IF2 is connected.
Returns:

None
3.36) CloseIF2
Function description:
This function is used to Close Port used by IF2.
Usage:
void WINAPI CloseIF2 (unsigned char Port);
Parameter:
Port: The port value is got when calling function OpenIF2.
Returns:

None
3.37) GetIF2Data
Function description:
This function is used to get information by IF2 port.
Usage:
void WINAPI GetIF2Data (unsigned char * Data, long * DataLength);
Parameter:
Data: Pointed to the data get from IF2 port.
DataLength: Pointed to the length of the Data.
Returns:

None
3.38) OpenNetPort
Function description:
The function is used to open net port.
Usage:
Long WINAPI OpenNetPort(int Port,LPSTR IPaddr, unsigned char *ComAdr, long *FrmHandle);
Parameter:
Port: Pointed to the net port of the reader.

IPaddr: Pointed to string of reader IP.
ComAdr: Pointed to the address of the reader.
FrmHandle: Handle of the corresponding communication port the reader is connected. The handle value is got when calling function OpenNetPort..
Returns:
Zero value when successful, non-zero value(ErrorCode) when error occurred.
3.39) CloseNetPort
Function description:
The function is used disconnected net port.
Usage:
Long WINAPI CloseNetPort (long FrmHandle);
Parameter:
FrmHandle: Handle of the corresponding communication net port the device is connected. The handle value is got when calling function OpenNetPort..
Returns:

None
4. Appendix 1

List of Command Returned value:
	Value
	COMMENT

	0x00
	Operation succeed

	0x05
	The requested log data record does not exist or has been corrupted.

	0x06
	The controller is undergoing self-testing and initialization.

	0x07
	The sequence number of the requested log data record is out of range.

	0x08
	The command is invalid.

	0x09
	The current mode of the controller is incorrect.

	0x0A
	The controller can not switch to the requested mode.

	0x0B
	The controller has been forced in EAS mode.

	0x0C
	The controller fails to save the new infrared sensors’ sensing direction.

	0x0D
	The controller can not disable the background log data recording.

	0x0E
	The background saved configuration data does not exist or has been corrupted.

	0x30
	Communication error.

	0x31
	CRC Check error.

	0x32
	Length of returned data error.

	0x33
	Communication Busy.

	0xFF
	General error.

5. Appendix 2

Function and Command Cross-reference

	Function
	Corresponding Command in DL8220U User’s Manual

	GetChannelMessage
	C

	Acknowledge
	A

	SetRelay
	O

	BuzzerAndLEDControl
	B

	SetClock
	@

	GetClock
	@

	ClearControllerBuffer
	D

	ConfigureController
	F

	GetControllerConfig
	R

	SetIR
	I

	GetIRStatus
	I

	GetControllerInfo
	G

	GetControllerDetailedInfo
	H

	SetAlarmPattern
	w

	GetBGLogDataStatus
	Q

	RetrieveEarliestRecord
	E

	RetrieveRecordByIndex
	S

	DeleteAllRecord
	T

	GetControllerReaderConnectionStatus
	Z

	CommunicationsSetting
	m

	SetControllerAddr
	K

	ModeSwitch
	M

	IRDirectionSetting
	N

	ControllerReaderConnectionBrokenAlarm
	V

	SetAlarmMask
	U

	Function
	Corresponding Command in DL8220U User’s Manual

	GetEASMessage
	L

	SetBGLogDataStatus
	a

	GetBGLogDataRecordingStatus
	b

	SaveRestoreConfig
	f

	SetAutoLoad
	r

PAGE
39

